Buckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading
Authors
Abstract:
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-based micromechanical model. This study indicates how buckling resistance of composite cylindrical shell may vary by applying thermal and electrical loads. Applying the reverse voltage or decreasing the temperature, also, increases the critical axial buckling load. This work showed that the piezoelectric BNNT generally enhances the buckling resistance of the composite cylindrical shell.
similar resources
Non-Linear Response of Torsional Buckling Piezoelectric Cylindrical Shell Reinforced with DWBNNTs Under Combination of Electro-Thermo-Mechanical Loadings in Elastic Foundation
Nanocomposites provide new properties and exploit unique synergism between materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix applicable in nanocomposites in a broad range of industries from oil and gas to electronics and automotive. And boron nitride nanotubes (BNNTs) show high mechanical, electrical and chemical properties. In this paper, the critical torsional load of...
full textElectro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid
In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of...
full textEffects of Electro-Thermal Fields on Buckling of a Piezoelectric Polymeric Shell Reinforced with DWBNNTs
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo- mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to ...
full textExact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads
In this research, static stresses analysis of boron nitride nano - tube reinforced composite (BNNTRC) cylinder made of poly - vinylidene fluoride (PVDF) subjected to non - axisymmetric thermo - mechanical loads and applied voltage is developed. The surrounded elastic medium is modelled by Pasternak foundation. Composite structure is modeled based on piezoelectric fiber reinforced composite (PFR...
full textAnalytical Solution for Response of Piezoelectric Cylinder Under Electro-Thermo-Mechanical Fields
This paper presents an analytical solution for response of a piezoelectric hollow cylinder under two-dimensional electro thermo mechanical fields. The solution is based on a direct method and the Navier equations were solved using the complex Fourier series. The advantage of this method is its generality and from mathematical point of view, any type of the thermo mechanical and electrical bound...
full textElectro-Mechanical Buckling of a Piezoelectric Annular Plate Reinforced with BNNTs Under Thermal Environment
In this article, axisymmetric buckling behavior of piezoelectric fiber reinforced polymeric composite (PFRPC) annular plate subjected to electro-thermo-mechanical field is presented utilizing principle of minimum potential energy. Boron-nitride nanotubes (BNNTs) are used as fibers. Full coupling between electrical, mechanical and thermal fields are considered according to a representative volum...
full textMy Resources
Journal title
volume 4 issue 3
pages 296- 306
publication date 2012-09-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023